Combination therapy of statins and fibrates in the management of cardiovascular risk
Catherine Fiéveta,b,c,d and Bart Staelsa,b,c,d

aUniv Lille Nord de France, bInserm, U945, cUDSL and dInstitut Pasteur de Lille, Lille, France

Correspondence to Bart Staels, PhD, Institut Pasteur, 1 rue du Professeur Calmette, 59019 Lille Cedex, France
Tel +33 3208 77825; fax +33 3208 77360; e-mail: BartStaels@pasteur-lyre.fr

Current Opinion in Lipidology 2009, 20:505–511

Purpose of review
Despite the fact that statin treatment substantially reduces cardiovascular morbidity and mortality, many treated patients still experience a high residual risk. Statins lower LDL cholesterol (LDL-C), with limited effects on other lipid parameters. Fibrates improve atherogenic dyslipidemia characterized by high triglyceride and/or low HDL cholesterol levels and elevated concentrations of small dense LDL particles, with or without high LDL-C levels. Fibrates decrease cardiovascular morbidity, especially in patients with the metabolic syndrome. The purpose of this review is to provide a rationale for the combined use of statins and fibrates in the management of patients with high residual cardiovascular risk related to atherogenic dyslipidemia and persisting after single therapy.

Recent findings
A meta-analysis from 14 randomized trials conducted in high-risk patients reported that statin therapy is effective in reducing the proportional risk for major vascular events by 21% for each mmol/l lowering of LDL-C. However, on average, 14% of patients still experienced an event despite being allocated to statin. Beyond LDL-C, other factors, including triglycerides, non-HDL cholesterol, HDL cholesterol, and apolipoprotein B, have been identified as factors determining residual risk, and normalization of these parameters may further decrease cardiovascular disease in patients treated with statins. Data from fibrate trials indicate that these drugs are particularly effective in reducing cardiovascular morbidity in patients with atherogenic dyslipidemia.

Summary
Reducing the residual cardiovascular risk in patients treated with statins requires addressing multiple lipid goals. In this context, future therapeutic interventions based on combination therapy, such as statins and fibrates, appear particularly promising.

Keywords
cardiovascular risk factors, dyslipoproteinemia, fibrates, residual risk, statins

Introduction
An elevated LDL cholesterol (LDL-C) level is a major risk factor for cardiovascular disease (CVD), and several randomized clinical trials have shown that lowering LDL-C levels with statins results in a substantial reduced CVD morbidity and mortality [1,2,3]. However, a significant number of treated patients continue to experience events, despite targeting LDL-C levels according to current guidelines [3,4]. Moreover, even upon high doses of statins, a substantial residual risk remains [5,6].

Data from the INTERHEART study (a global study of risk factors for acute myocardial infarction) [7] indicated that dyslipidemia is responsible for more than 50% of population-attributable vascular risk. Within this context, more and more attention is now being paid to atherogenic dyslipidemia which is characterized by elevated triglyceride and low HDL cholesterol (HDL-C) levels, a preponderance of small, dense LDL particles, and an accumulation of cholesterol-rich remnant particles with high levels of apolipoprotein B (apoB). These lipoprotein abnormalities are frequently found in patients with high-vascular risk, including patients with the metabolic syndrome or type 2 diabetes mellitus (T2DM) [8,9]. Although the primary goal to reduce the cardiovascular risk in these patients is LDL-C lowering [10], current treatment guidelines emphasize the relevance of considering not only the other lipoprotein abnormalities but also nonlipid risk factors (such as tobacco consumption, blood pressure, physical activity, weight management, and so on) that contribute to global risk [11–13].
Both statins and fibrates are lipid-lowering drugs. Statins are hydroxymethylglutaryl-CoA reductase inhibitors, inhibiting the synthesis of cholesterol, and are primarily LDL-C-lowering agents. Fibrates activate the peroxisome proliferator-activated receptor α (PPARα), a transcription factor that regulates the expression of a number of genes involved in multiple metabolic pathways including lipid metabolism, ultimately reducing plasma triglyceride concentrations and enhancing HDL levels [14**]. Fibrates have a beneficial action on the atherogenic dyslipidemia. The differences in action mechanisms of statins and fibrates, resulting in distinct pharmacological effects and an improvement of different components of the lipid profile, provide a rationale for their use in combination in patients with high residual cardiovascular risk related to atherogenic dyslipidemia and persisting after single therapy, such as patients with the metabolic syndrome or T2DM.

Apart from their effects on lipid metabolism, fibrates and statins display other pleiotropic effects such as an improvement of endothelial function, a reduced inflammation at both vascular and systemic levels, an increased stability of atherosclerotic plaques, and a decreased thrombogenic response. Evidence suggests that, at least for statins, these pleiotropic effects may play a role in the reduction of cardiovascular morbidity and mortality [15,16**]. Pleiotropic effects of fenofibrate might explain the positive effects of fenofibrate on microvascular complications of T2DM and a potential benefit on the CVD risk [17]. However, whether combination statin–fibrate therapy is more effective on inflammatory markers than either form of monotherapy requires further investigation [18,19].

Patients treated with statins still experience a residual cardiovascular risk
A meta-analysis from 14 randomized secondary and/or primary prevention trials studied the efficacy of cholesterol-lowering therapy by statin therapy in patients with preexisting coronary heart disease (CHD), history of diabetes, or hypertension, that is, in a wide range of high-risk patients, having variable baseline lipid profile [1]. This analysis reported that statin therapy efficaciously reduces the risk for vascular events [defined as the composite outcome of myocardial infarction (MI) or coronary death, stroke, or coronary revascularization] by 21% for each mmol/l lowering of LDL-C [relative risk (RR) 0.79, 95% confidence interval (CI) 0.77–0.81, P < 0.0001] [1]. Despite this, treated patients are left with a substantial relative residual risk, and one in seven patients experienced events over a 5-year period. More recently, analyses of the diabetic patients in these studies showed that statin therapy results in a proportionally similar reduction in vascular events irrespective of whether diabetes was present (RR 0.79, 95% CI 0.72–0.86, P < 0.0001 with diabetes versus RR 0.79, 95% CI 0.76–0.82, P < 0.001 without diabetes) [3]. However, among the diabetic patients, the presence of low HDL-C and/or elevated triglyceride limits the reduction in vascular events, even if patients achieve LDL-C levels below current targets [3].

Intensive statin therapy with high-dose statins, resulting in LDL-C levels that are maximally reduced below currently optimal thresholds for treatment of very high-risk patients (i.e., <70 mg/dl), provides an additional and significant cardiovascular benefit in patients with recent acute coronary syndromes (ACS) and stable CHD over standard-dose therapy [5,6]. However, despite this, patients were still at a very high residual risk, and although the combined analysis from four large trials yielded a 16% relative reduction of coronary death or any cardiovascular event (defined as MI, stroke, hospitalization for unstable angina, or revascularization) (P < 0.0001), 28.8% of patients still experienced events [5]. More recently, pooled data from six trials, analyzing separately recent ACS and stable CHD, showed that intensive statin therapy is associated with a reduction of 14 and 18% in cardiovascular death, ACS, or stroke but is still leaving, respectively, one in four and 10 patients at risk, depending on their clinical subcategory [6]. Whether further increasing statin doses in monotherapy to further enhance LDL-C lowering is an appropriate strategy is a matter of debate for different reasons. First, because of the flattening of the dose–response curve at higher doses, the therapeutic benefit of increased dose is likely to become less, and recent data indicated that ACS patients with the lowest LDL-C levels have only modest clinical benefits after intensive statin therapy [20]. Second, increasing the statin dose occurs at the expense of increased risk for adverse events such as myalgia and/or elevations in liver or muscle enzymes. Third, the optimal target for LDL-C remains unknown, and a large randomized trial is underway to examine whether the addition of ezetimibe to simvastatin, resulting in further decreased LDL-C as compared with changes obtained after simvastatin alone, translates into clinical benefit on cardiovascular events in patients with ACS [21*]. Finally, beyond LDL-C, other additional lipid, especially those associated with atherogenic dyslipidemia, and nonlipid factors determine the cardiovascular risk. Therefore, it cannot be determined whether benefits of intensive statin therapy are due to high-dose statins, resulting in effects on other factors than solely LDL-C, or solely due to LDL-C level lowering. Interestingly, it has been recently demonstrated that statin treatment decreases cardiovascular event rates even in asymptomatic patients with normal LDL-C concentrations but with evidence of inflammation as assessed by increased levels of the inflammatory biomarker high-sensitive C-reactive
protein (hsCRP) [16**], and that clinical benefits are maximized when both LDL-C and hsCRP are reduced [22**]. These studies demonstrate the need for considering markers of inflammation beyond LDL-C in the management of CVD.

Other lipoprotein parameters beyond LDL-C determine the cardiovascular disease risk

Post-hoc analysis of the Scandinavian Simvastatin Survival Study (4S) trial showed that patients with combined dyslipidemia at baseline, that is, elevated LDL-C, low HDL-C, and elevated triglycerides, had increased morbidity and an increased major coronary event (death and MI) rate on placebo [23]. Moreover, patients with T2DM experience higher rates of cardiovascular events, with decreasing HDL-C and increasing triglyceride concentrations, and an increasing LDL/HDL ratio [3]. Finally, retrospective analyses demonstrate that the achievement of combined lipid values, rather than solely reducing LDL-C, is associated with a reduced risk of cardiovascular events [24].

The residual cardiovascular risk that remains after statin treatment is of multifactorial origin, and recent post-hoc analyses from clinical trials suggest an important contribution of lipid parameters other than LDL-C. It has long been established that HDL-C levels are a strong, independent, inverse predictor of CVD [25]. Accordingly, post-hoc analyses showed that the risk of CVD events was inversely related to HDL-C levels in individuals with CVD who achieved LDL-C levels of less than 70 mg/dl upon statin treatment [26,27]. A pooled analysis of four statin trials showed that a moderate increase in HDL-C (7.5%) correlated with atheroma regression [28]. Finally, from the Bezafibrate Infarct Prevention (BIP) study, post-hoc extended analysis showed that HDL-C increments during bezafibrate therapy are inversely correlated with cardiovascular risk [29*], and long-term follow-up reported long-term reduction in mortality [30].

Extensive evidence supports elevated triglyceride levels, predominantly in the postprandial state, as a predictor for CVD [31,32], and a recently published meta-analysis of 29 prospective studies (262,525 participants, 10,158 with CHD) confirmed this association, showing independence from other risk factors including HDL-C [33]. Post-hoc analysis of the Pravastatin or Atorvastatin Evaluation and Infection Therapy-Thrombolysis in MI-22 (PROVE-IT TIMI-22) trial showed that among patients with ACS treated with statins, on-treatment triglyceride above 150 mg/day was associated with a higher risk of recurrent CVD events independently of the level of LDL-C [34]. Finally, a post-hoc analysis of the Fenofibrate Intervention and Event Lowering in Diabetes (FIELD) study showed that the largest effects of fenofibrate to reduce CVD risk are obtained in individuals with the metabolic syndrome and hypertriglyceridemia or combined dyslipidemia (defined as triglyceride levels >2.3 mmol/l alone or with a low HDL-C level, respectively) [35**]. The absolute risk reduction in the presence of marked dyslipidemia was 4.3% compared with 0.8% in its absence, corresponding to a number needed to treat of 23 compared with 143, respectively.

An accurate management of cardiovascular risk requires assessment of all atherogenic lipoprotein particles, not just LDL. Non-HDL-C levels correspond to the mass of cholesterol within all atherogenic lipoprotein particles, and apoB and/or LDL particle number provides an estimate of atherogenic particle concentrations. Although it has been shown that non-HDL-C is an important target of therapy for nonfatal MI and coronary death [36], whether it may further reduce excessive residual CVD risk along with LDL-C still remains open [37,38]. Studies reporting both measurement of LDL particles by NMR and/or apoB and LDL-C have consistently found that total LDL particle number is a better predictor of CVD risk than LDL-C with the objective to reduce this risk [39,40,41*], particularly in patients with the metabolic syndrome [42*].

Mechanistic rationale for statin and fibrate combination therapy

Statins primarily lower LDL-C and have only limited effects on triglycerides and HDL-C at commonly used doses and in patients without marked hypertriglyceridemia. Moreover, they do not normalize the LDL size distribution pattern. Fibrate treatment results in reduced plasma triglyceride, non-HDL-C, and apoB. Fibrates also positively influence HDL metabolism through an increase in the PPARα-mediated transcription of apoAI and apoAII, the two major apolipoproteins of HDL, and stimulate reverse cholesterol transport by modulating macrophage cholesterol efflux and cholesterol transport, resulting in raised levels of HDL with absolute changes that depend on the fibrate. The effect of fibrates on LDL-C is variable, ranging from a small decrease to essentially no changes or even a slight increase in highly hypertriglyceridemic patients. Moreover, fibrates increase LDL particle size and modify LDL subclass distribution from small, dense particles to large buoyant LDL particles and reduce the number of small LDL particles in patients with hypertriglyceridemia and the metabolic syndrome [43–45]. In-vivo kinetic experiments showed that atorvastatin or fenofibrate treatment of patients with T2DM or the metabolic syndrome and hypertriglyceridemia results in a similar decrease of plasma triglyceride levels probably due to comparable effects on VLDL–apoCIII kinetics [46], and distinct but favourable effects on apoB-containing lipoproteins with
apoB100 and apoB48 metabolism [47]. By contrast to atorvastatin, fenofibrate displayed significant effects on apoAI metabolism in HDL [48]. All these observations provide the rationale for the use of fibrate–statin combination therapy to optimally control dyslipoproteinemia in patients with T2DM or the metabolic syndrome.

Fibrates reduce cardiovascular disease in patients with atherogenic dyslipidemia

A number of angiographic and intervention trials have shown that fibrates can slow the progression of atherosclerotic disease and decrease CVD morbidity [14**]. However, most of the large prospective trials have been disappointing with respect to the primary endpoints, and a meta-analysis suggests that fibrates do not influence overall mortality [49]. It is likely that these fibrate trials produced mixed results due to the large differences in study populations. Indeed, post-hoc or follow-up analyses have consistently demonstrated that fibrates are more effective at reducing macrovascular events among patients with the metabolic syndrome. The Helsinki Heart Study (HHS) was a primary prevention trial testing gemfibrozil as an active agent in men with primary dyslipidemia (non-HDL-C >200 mg/dl). An 18-year mortality follow-up analysis showed that patients with a BMI and triglyceride concentrations in the highest tertile had significantly lower rates of CHD mortality (71% lower RR) and all-cause mortality (33% lower RR) compared with those in the original placebo group [50].

The Veterans Affairs High-Density Lipoprotein Intervention Trial (VA-HIT) trial randomized men with low HDL-C and LDL-C concentrations nearly at goal (<100 mg/dl) at baseline, to treatment with gemfibrozil or placebo. Participants with T2DM or those without T2DM but with insulinemia in the highest fasting plasma insulin quartile were benefited from a higher reduction in the RR for major cardiovascular events (a composite of CHD death, stroke, and nonfatal MI) than in the entire study population (RR of 32, 35, and 24%, respectively) [51] after fibrate therapy. In the BIP study, bezafibrate treatment failed to achieve significance of the primary endpoint (a composite of fatal or nonfatal MI or sudden death) in patients with elevated LDL-C, low HDL-C, and triglyceride of less than 150 mg/dl. However, a post-hoc analysis showed significantly reduced event rates in patients with elevated triglyceride levels [52]. More recently, a further post-hoc analysis confirmed that bezafibrate is more effective at reducing cardiovasculc events among patients with the metabolic syndrome, with a more pronounced reduction in cardiac mortality depending on the number of metabolic syndrome features [53]. Finally, the FIELD study investigated the effects of fenofibrate on CVD morbidity and mortality in patients with early-stage, well controlled T2DM. Although after 5 years of treatment there was not a significant risk reduction in the primary endpoint (CVD death or nonfatal MI), there was a significant reduction of total CVD events, particularly nonfatal MI and coronary revascularization. One potential problem in the study was the higher rate of statin therapy drop-in in the placebo group, which might have masked treatment benefit. Nevertheless, further subgroup analyses demonstrated that in the cohort with the most dyslipidemic profile, that is, low HDL-C and/or elevated triglyceride levels, fenofibrate was significantly more efficacious (27% RR reduction) [35**].

Statin and fibrate combination therapy may be an appropriate therapeutic approach to reduce the global cardiovascular risk in patients with atherogenic or combined dyslipidemia

The distinct mechanisms of action, resulting in different clinical effects, of statins and fibrates provide a rationale for combined use in the treatment of patients with dyslipidemia and high residual cardiovascular risk persisting after single therapy.

A recent post-hoc analysis of the BIP study using bezafibrate showed that in patients with low HDL-C and moderately elevated LDL-C, the clinical benefit of LDL-C and triglyceride modification in terms of cardiac events (nonfatal MI or death) is inversely related with baseline levels of LDL-C, demonstrating an enhanced benefit in patients with low LDL-C, whereas the benefit of LDL-C modification is more prominent in patients with increased LDL-C [54*]. Hence, combined assessment of LDL-C, HDL-C, and triglycerides as therapeutic targets for lipid modification using lipid-lowering drugs may provide an incremental benefit on top of approaches based solely on LDL-C modification. Hence, a statin combination therapy with fibrates or other drugs that would enhance HDL-C and decrease triglycerides is recommended in such patients [10].

Short-term clinical studies [18,55–57,58*] have shown that combined therapy with statin and fenofibrate is more effective in controlling atherogenic dyslipidemia in patients with T2DM, the metabolic syndrome, or combined dyslipidemia than the administration of either drug alone. Accordingly, it has been calculated that atorvastatin–fenofibrate combination therapy for 24 weeks to patients with T2DM, free of CVD at entry, would reduce the estimated risk for MI within the next 10 years from 21.6 to 4.2% [55]. Fenofibrate is an ester of fenofibric acid and requires first-pass metabolism to form the active metabolite, fenofibric acid. ABT-335, the choline salt of fenofibric acid, is more hydropphilic than fenofibrate. This compound dissociates to form the free acid in the gastrointestinal tract, and fenofibric acid is rapidly
absorbed without requiring first-pass metabolism. Recently, a large phase III clinical trial evaluating ABT-335 in combination with simvastatin, atorvastatin, or rosuvastatin in patients with mixed dyslipidemia (triglyceride >150 mg/dl, HDL-C <40 mg/dl for men and <50 mg/dl for women, and LDL-C >130 mg/dl) demonstrated that combination results in a more effective control of lipid parameters than either monotherapy alone [59,60,61*].

Thus, from these data, it is evident that the combination of statin and fibrates results in an improved control of the atherogenic lipid profile often found in high cardiovascular risk patients. However, whether this beneficial effect translates into risk reduction is not yet known. This will be answered by the lipid-lowering arm of the ongoing Action to Control Cardiovascular Risk in Diabetes (ACCORD) study [62]. The ACCORD trial is a randomized clinical trial aimed at determining the effects on CVD of intensive glycemic control in combination with strategies for lipid and/or blood pressure management in patients with T2DM. In February 2008, the glycemic control study was halted due to the finding of an increased rate of mortality in the intensive arm compared with the standard arm. The blood pressure and lipid studies are still ongoing. The lipid arm tests the hypothesis that whether, in the context of good glycemic control, adding fenofibrate to simvastatin will reduce the rate of CVD events compared with statin along with placebo.

Despite the potential benefit of fibrate–statin combination therapy on the lipid profile, case reports of severe myopathy and rhabdomyolysis have raised concerns regarding safety of this coadministration. However, the absolute risk is low. Moreover, differences exist due to differences in pharmacokinetics and drug–drug interactions [63]. Pharmacokinetic data on the interactions between statins and fibrates suggest that gemfibrozil inhibits statin glucuronidation and its hepatic metabolism, inducing, therefore, higher statin concentrations, whereas other fibrates, such as fenofibrate, have a relatively low potential for interaction with statin metabolism [64]. Indeed, the combination of ABT-335 and rosuvastatin did not alter fenofibrin acid pharmacokinetics nor the rosuvastatin area under the concentration curve (AUC), indicating that ABT-335 does not have a clinically significant pharmacokinetic interaction with rosuvastatin in humans [65]. Hence, current guidelines recommend fenofibrate as the fibrate of choice for high-risk statin-treated patients with atherogenic dyslipidemia [66].

Conclusion

Although statins reduce cardiovascular morbidity and mortality owing, in part, to reduced LDL-C, a number of treated patients still face a very high cardiovascular risk. In fact, significant proportions of such patients are not reaching lipid goals. Generally, they suffer from an atherogenic dyslipidemia associated with T2DM or the metabolic syndrome, which is not adequately corrected by statin therapy. Therefore, beyond a further decrease in LDL-C, which could be achieved through the addition of other cholesterol-lowering agents such as intestinal cholesterol absorption inhibitors (ezetimibe), other therapeutic approaches have to be developed for these dyslipidemic patients. Indeed, current guidelines recommend that the addition of other drugs to achieve multiple lipid goals after LDL-C targets has been reached by statin therapy. Among these drugs, fibrates present a great interest because of their effects to reduce triglyceride levels, improve LDL particle size and number, and increase HDL-C concentrations. Other drugs, such as niacin, also merit further investigation, as these compounds increase HDL-C even more pronouncedly.

References and recommended reading

Papers of particular interest, published within the annual period of review, have been highlighted as:

- of special interest
- of outstanding interest

Additional references related to this topic can also be found in the Current World Literature section in this issue (p. 519).

Copyright © Lippincott Williams & Wilkins. Unauthorized reproduction of this article is prohibited.

A review on the contribution of the atherogenic lipid profile to residual CVD after statin treatment, exploring to what extent PPARs agonists can decrease this risk.

An intervention study [Justification for the Use of Statins in Prevention: an Intervention Trial Evaluating Rosuvastatin (JUPITER) trial] showing the efficacy of rosuvastatin in decreasing hsCRP and CVD event rates in asymptomatic patients without hyperlipidemia.

A trial (still ongoing) examining whether the addition of ezetimibe to simvastatin translates into a clinical benefit on CVD.

A follow-up analysis of the JUPITER trial demonstrating that achievement of low LDL-C and hsCRP levels together results in an improved event-free survival compared with achievement of neither parameter nor reduced LDL-C alone.

An extended follow-up of the BIF trial demonstrating that, after appropriate adjustment for the use of nonstudy lipid-lowering drugs during follow-up, bezafibrate therapy is associated with significant long-term CVD protection.

A post-hoc analysis of the FIELD study showing that the highest CVD risk and greatest benefits of fenofibrate are seen among patients with T2DM and atherogenic dyslipidemia.

A study documenting the differential effects of statin therapy on the lowering of LDL-C and increasing of HDL-C to LDL and HDL particle concentration in patients with the metabolic syndrome.

A post-hoc analysis of the BIP study showing that the clinical response to HDL-C and triglyceride changes upon bezafibrate therapy is most pronounced in patients with low baseline LDL-C levels.

The Diabetes and Combined Lipid Therapy Regimen (Diacor) study reporting that combination therapy with simvastatin and fenofibrate has a greater positive effect on the LDL particle size profile, with a shift from the more atherogenic small, dense LDL to larger sub-particles compared with either fenofibrate or simvastatin monotherapy. Reductions of dense VLDL and IDL and increases in HDL are also most pronounced in patients receiving combination therapy.

A large phase III clinical trial demonstrating a better efficacy of ABT-335 with simvastatin [56], atorvastatin [60], or rosuvastatin [61] in patients with elevated triglyceride and lowered HDL-C levels than statin monotherapy alone.

